Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 50(2): e5988, 2017. graf
Article in English | LILACS | ID: biblio-839254

ABSTRACT

This study was undertaken to clarify the role and mechanism of pyruvate dehydrogenase kinase isoform 2 (PDK2) in chondrogenic differentiation of mesenchymal stem cells (MSCs). MSCs were isolated from femurs and tibias of Sprague-Dawley rats, weighing 300-400 g (5 females and 5 males). Overexpression and knockdown of PDK2 were transfected into MSCs and then cell viability, adhesion and migration were assessed. Additionally, the roles of aberrant PDK2 in chondrogenesis markers SRY-related high mobility group-box 6 (Sox6), type ΙΙ procollagen gene (COL2A1), cartilage oligomeric matrix protein (COMP), aggrecan (AGC1), type ΙX procollagen gene (COL9A2) and collagen type 1 alpha 1 (COL1A1) were measured by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The expressions of c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK) and extracellular regulated protein kinase (ERK) were measured. Overexpressing PDK2 promoted cell viability, adhesion and inhibited cell migration in MSCs (all P<0.05). qRT-PCR assay showed a potent increase in the mRNA expressions of all chondrogenesis markers in response to overexpressing PDK2 (P<0.01 or P<0.05). PDK2 overexpression also induced a significant accumulation in mRNA and protein expressions of JNK, p38MAPK and ERK in MSCs compared to the control (P<0.01 or P<0.05). Meanwhile, silencing PDK2 exerted the opposite effects on MSCs. This study shows a preliminary positive role and potential mechanisms of PDK2 in chondrogenic differentiation of MSCs. It lays the theoretical groundwork for uncovering the functions of PDK2 and provides a promising basis for repairing cartilage lesions in osteoarthritis.


Subject(s)
Animals , Male , Female , Rats , Chondrogenesis/physiology , JNK Mitogen-Activated Protein Kinases/physiology , MAP Kinase Signaling System/physiology , Mesenchymal Stem Cells/physiology , Protein Serine-Threonine Kinases/physiology , SOXE Transcription Factors/physiology , Cell Differentiation , Rats, Sprague-Dawley , Transcriptional Activation , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL